7 research outputs found

    Design of a sustainable house including the requisites of the Spanish Regulation

    Get PDF
    Abstract: Green Building is a philosophy aiming to maintain a high quality of the built environment while optimizing the use of resources, both materials and energy. Related to green building, sustainable construction consists in the creation and operation of a healthy built environment giving rise to high-performance green buildings. These building concepts have already been taken into account by the European Union (EU) that has promoted the use of alternative energies, thermal insulation and responsible consumption programs, among others. The Directive 2002/91/EC came into force to regulate energy efficiency in new buildings. Member States transposed this text to their legal systems, considering the particularities of to their territories, geography, economy and society. In Spain, the Spanish Technical Building Code (CTE-Código Técnico de Edificación) promotes sustainable building. Other regulations regarding energy buildings certification, energy efficiency or renewable energy promotion have already been adopted. This work presents a house designed taking into account some aspects of the sustainable house design, and compares it with a reference house. These aspects include the thermal requirements of the house following a simplified option established in the basic documents HE1 (Limitation of the energetic demand) and HE4 (Minimal solar contribution for heating domestic water) of the Spanish Building Technical Cod

    Development and Application of a Thermal Comfort Model in Buildings

    No full text
    Buildings are one of the systems that more energy consumed in the European Union. The study of the thermal envelope is interesting in order to reduce the energy losses. For that, a mathematical model able to predict the system response to external temperature variations is developed. With the mathematical model, different thermal envelope elements of a building based on the lag and the cushioning of the resultant wave can be characterized. In addition, it is important to analyse where the insulation is placed, because when the insulation is outside and the thermal mass is inside, the system produces a response with smooth temperature variations than when the insulation is inside. Therefore, placing the outside insulation generates more steady indoor temperatures, increasing the thermal comfort inside the building. To complete the mathematical model that allows predicting the temperature inside a building taking into account the solar inputs and the thermal inertia of the building. This study will help to establish the optimum design parameters in order to build sustainable and comfortable buildings. Furthermore, it will take one step forward in the construction of nearly Zero-Energy Buildings

    The Role of a Hazardous Waste Intermediate Management Plant in the Circularity of Products

    No full text
    Zero-pollution goals and the reduction in environmental pressures related to production and consumption have become a priority in recent environmental policies such as the 8th European Environment Action Program proposal. Adapting current industrial processes is essential to this transition towards a regenerative economy. This work presents a redesign plan for an industrial system that includes mechanical workshops and a hazardous waste intermediate management plant, covering all management activities (both off-site and on-site), such as collection, transport, and treatment. The waste management hierarchy is modified/amplified considering the original definition and the circular economy focus. This includes the improvement of existing processes and/or the design of new sustainable processes from waste to energy and useful materials, with different foci (integrated pollution prevention and control, industrial ecology, the circular economy, system dynamics, and life-cycle thinking (LCT)) and different tools employed (Best Available Techniques inventory (BAT), process simulation, BAT analysis, industrial symbiosis, dynamic material and energy flow analysis, and LCT tools). These tools help us to improve the sustainability of waste to energy and useful materials processes and improve symbiotic behaviour in the industrial system. This study shows the real possibility of achieving the circularity of products, transforming the waste sector into a productive one. Meanwhile, it contributes to the extinction of the traditional concept of waste

    Towards sustainable re-construction systems: from waste ruins to eco-efficient buildings

    No full text
    Building reconstruction projects are mainly motivated by social factors, without a deep evaluation of the Best Available Techniques. The main aim of this work is to analyze the advantages of defining sustainable retrofitted buildings, previously building the edifice, by using methodologies towards sustainable systems. A real re-constructed building is considered as a case study. Three scenarios are investigated to analyze its sustainability, including the waste ruins of the old building (Scenario 1), the current re-constructed building (Scenario 2), and a hypothetical sustainable retrofitted building (Scenario 3). Firstly, the current energy consumption is studied including heating flow through walls (thermal bridges and condensation risk) as well as operational costs. Secondly, a new scenario is proposed adding passive solutions to this existing building, to improve its energy efficiency; also, energy consumption and costs of the refurbishment are analyzed. Results show that Scenario 1 leads to a bad image of a city involving the environment and social fields. Scenario 2 entails expensive operational costs. On the other hand, Scenario 3 results in approximately 90% of cost savings in heating energy demand, which would be traduced on high economic savings. Taken into account not only economic factors but environmental and social ones, it can be concluded that it is more sustainable and profitable constructing an efficient building from the beginning by using waste ruins and simulation software despite refurbishing a re-built edifice

    Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal

    No full text
    Renewable Energy Sources (RES) are widely used worldwide due to their positive effect on the environment, being sustainable, low cost, and controllable. The power generated from RESs must be configured to interface and perfectly synchronize with the grid by using Power Electronics Converters (PEC). A Phase-Locked Loop (PLL) is one of the most popular synchronization techniques used due to its speed and robustness. A growing issue that results in oscillations in the estimated fundamental grid phase, frequency, and voltage amplitude is the DC-offset in the input of the PLL. This study was developed to eliminate the DC-offset in the single-phase grid synchronization using Delay Signal Cancellation (DSC) and a fixed-length Transfer Delay (TD)-based PLL. Then, the small-signal model, stability analysis, and selection of controller gains were discussed. The proposed PLL was simulated using MATLAB/Simulink. Moreover, to evaluate the proposed method, several scenarios were developed in order to compare it with other powerful PLLs in terms of performance indicators such as settling time, frequency, and phase error. As a result, the proposed PLL has the fastest dynamic response, completely rejects the DC-offset effect, and fully synchronizes with the electrical grid
    corecore